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1 Introduction
Motivation:

Disaster response and search and rescue missions are among the most difficult
missions in which an autonomous robot can be deployed [13]. Missions such as these
require a robot to autonomously navigate chaotic, unstructured environments. This is
normally done with the aid of visual and lidar sensors. However, the quality of state
estimates from visual and lidar methods quickly degrades in the presence of smoke,
fog, and other visually degraded environments (VDEs) commonly encountered in
disaster response missions as shown in figure 1. Thus, it is clear that there exists a
need for a reliable and efficient method for state estimation and perception that is
robust to VDEs.

Fig. 1 In the presence of
dust, measurements from
a monocular camera (left)
are saturated. VLP-16 lidar
scans (right) are corrupted
with unbearable noise (white
circles).

Problem Statement:
The problem addressed by this work is that of controlling a small flying robot and

avoiding obstacles in dense fog. To this end we present a novel radar-inertial state
estimation and mapping technique including two unique features: an improved radar
sensor model to more accurately model the sensor’s physics and a mapping method
incorporating a learned noise filter and a radar-specific sensor model.

Related Work:
Several other methods have been proposed for control and planning in VDEs.

Most notably, [7] proposes a navigation system using thermal imaging and inertial
measurements. This is a promising area of research but there is another sensing
option that is well suited for perception in VDEs: radar.

Radar is well-established in the automotive industry but has largely been ignored
in robotics. Only a fewworks exist using radar as a primary sensor for state estimation
and perception. [1] presents methods for radar odometry in challenging conditions;
this work is extended in [2]. Additionally [11] and [10] have presented methods for
radar-based SLAM using arrays of automotive-grade radar sensors.

Contributions:
Our method represents a significant advance over previous methods in several

important ways. First, our method is applicable to 3D environments and is thus
usable on flying vehicles. Second, our method fuses radar and inertial measurements;
previous radar state estimation methods have used radar as their sole sensor and
robotic sensor fusion methods with radar have only been minimally explored. Lastly,
our method requires only one single-board radar sensor and an IMU, making sensor
package simpler than previous methods which have required mechanically-scanned
sensors or arrays of several sensors.
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2 Technical Approach
State Estimation

Our approach estimates the global-frame velocity v, and orientation q,( of the
sensor platform over a sliding window [12] of  successive radar measurements by
minimizing the cost function
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where  is the number of past radar measurements, D: is the set of targets in the
radar scan at time : , e3 is the Doppler error, and eB is the IMU error.

A radar measurement consists of a set of targets D. Each 3 ∈ D consists of
[Ã( , Ẽ', \̃( , q̃(]) , the range, Doppler, azimuth, and elevation for target 3. We assume
targets detected by the radar sensor are stationarywhile the sensor ismoving. Doppler
measurements are modeled as
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where 4E is the error in the Doppler measurement, C(, is a rotation matrix
representing the orientation of the sensor, vF is the estimated velocity of the sensor,
r̃( is the ray from the sensor to the target, and eA is the estimated error in that ray.
The full Doppler error is [4E e)A ]) , where eA is both a state to be estimated and an
error to be minimized as in a total least squares problem [3].

The inertial term combines IMU measurements grouped into a pre-integrated
factor as described in [4]. This is similar the inertial term used in [8], with the
exception that the sensor platform’s position is not estimated, only the velocity,
orientation, and IMU biases.

Radar Mapping
Using radar scans with common occupancy mapping methods such as octomap

[5] creates two problems: 1) the beam sensor model used in octomap does not
accurately model the operation of the radar sensor, and 2) radar is particularly
prone to false positives from noise and multipath reflections. To address the first
of these problems we employ a new, radar-specific sensor model. To combat the
noise problem, we developed a learned radar noise filter. This entails training the
PointNet segmentation network [9] to label radar points as either true readings or
noise using a new, weakly-supervised training method. This allows us to accurately
filter out erroneous readings and only add true measurements to our map. Lastly,
we have developed a method to detect multipath reflections and condense them into
a single, accurate reading. Together these three innovations allow us to accumulate
noisy radar returns into a dense, accurate map of a robot’s environment.
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3 Experiments
We have already done quantitative comparisons of our state estimation and map-

ping methods against other popular methods. All that remains is to demonstrate our
method’s use in closed-loop control of a micro-aerial vehicle, and compare radar-
based MAV control to popular visual methods in environments with and without
visually degraded conditions. The complete list of our experiments is laid out in
table 2.

Completed Experiments
We have done quantitative comparisons between our radar-inertial state estima-

tor’s performance and that of visual-inertial and lidar methods using a hand-carried
sensor rig and a vicon motion capture system as groundtruth. For the visual-inertial
benchmark we used the popular Intel Realsense T265 tracking camera, and for lidar
we used a velodyneVLP-16with theLAMPodometry system [6]. These comparisons
were done indoors with bright ambient light and no fog or other visual obscurants.
We also did qualitative comparisons of radar-inertial, visual-inertial, and lidar state
estimators in varying fog density. Fog density was quantified by visibility distance
and varied from 12m to less than 6m. The test space is shown in no fog and heavy
fog conditions in figure 2.

Fig. 2 The lab space used for
evaluation of the state esti-
mation and mapping methods
with a handheld sensor rig.
Shown with no fog on the left,
and high fog on the right.

(a) No fog, unlimited visibility (b) High fog, 6m visibility

Further, we quantitatively compared visual mapping methods with radar using
lidar maps as groundtruth in conditions with no fog. Lastly, we made quantitative
comparisons between radar, visual, and lidar mapping in varying fog conditions.

Scheduled Experiments
We plan to further evaluate our radar-based state estimation andmappingmethods

with the following tests.

• Demonstrate the use of radar-based state estimation and mapping for closed-loop
control of an autonomous micro-aerial vehicle (MAV)

• Compare accuracy of closed-loop control with radar methods to visual methods
both with and without fog.

Through these tests we intend to demonstrate that our radar-based state-estimation
and mapping methods allow for autonomous operation of MAVs in conditions that
would be prohibitive for the current state of the art in visual methods.
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4 Results
Table 1 shows the mean and standard deviation of the RMS error in velocity

estimates for our radar-inertial state estimator as well as visual-inertial and lidar
odometry methods in a brightly-lit indoor environment with no fog. These results
show the accuracy of our radar-inertial state estimator is on par with the state of
the art in visual-inertial and lidar-based methods when tested in conditions that are
favorable to all three methods.

Radar-Inertial Visual-Inertial Lidar
` f ` f ` f

G 0.2576 0.0935 0.2019 0.0898 0.2270 0.1197
H 0.2272 0.0827 0.1830 0.0845 0.2271 0.1325
I 0.1125 0.0268 0.0809 0.0124 0.2054 0.0649

Table 1: Mean (`) and standard deviation (f) in m/s of the RMS velocity estimate
errors in G, H, and I (over 10 runs of approx 60s each) for each estimator tested in no
fog. Ground truth is provided by a motion capture system.

Because fog prevents the use of motion capture, we do not have groundtruth for
our state estimator tests with fog. We can make a qualitative evaluation, however. In
low to medium fog states estimated by visual-inertial and radar-inertial methods tend
to agreewhile lidar does not. This indicates lidar state estimation is adversely affected
by even low fog levels while visual and radar-based methods continue to function
mostly normally. As fog levels increase visual and radar-based methods begin to
disagree. It is not possible to determine whether the radar or visual method is failing
in this case, but the properties of the radar sensor would lead one to believe it should
be more robust to fog than vision. This will be definitively demonstrated when we
compare vision and radar methods’ use in closed-loop control of an autonomous
MAV in foggy conditions.

We have also done qualitative comparisons between occupancy mapping using
our radar method, lidar, and an Intel Realsense d435 depth camera. As expected,
lidar clearly outperforms both radar and vision when mapping in conditions with
no fog. In these conditions our radar mapping method’s accuracy is quite similar to
mapping with the d435, although the d435 does provide denser maps. When low
levels of fog are introduced visual mapping is degraded to the point of uselessness.
Lidar is somewhat robust to lower fog, but higher fog levels render lidar mapping
completely unusable as well. Our radar mapping method, on the other hand, is
entirely unaffected by even the most dense fog in which we tested. This demonstrates
our radar mapping method’s advantages in visually degraded conditions. These
comparisons are demonstrated in the attached video.

We have thus far only done qualitative comparisons between mapping methods.
In our final submission we will include quantitative tests to rigorously compare the
accuracy of eachmappingmethod in terms of both false positives and false negatives.
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5 Experimental Insights
This work presents methods for state estimation and perception with a radar-

inertial sensor platform. We estimate the sensor platform’s velocity and orientation
by fusing Doppler velocity measurements from an SoCmillimeter wave radar sensor
with inertial measurements from an IMU. This work demonstrates other popular
robotic perception methods, vision and lidar, are incapacitated by conditions likely
to arise in a disaster response scenaroi like dense fog, but radar is unaffected by
these conditions. Lastly, the radar-inertial sensor suite is lightweight and has low
power requirements making it an attractive alternative for platforms with constraints
on their payload and power.

The experiments we have already completed demonstrate the accuracy of the
proposed state estimation method in indoor experiments via comparisons with a
motion capture system, a commercial VIO system, and a lidar-based system. Our
experiments demonstrate that the proposed method is comparable to VIO and lidar
methods for state estimation in conditions favorable to VIO and lidar. Further, the
our proposed radar-inertial state estimation method’s accuracy far exceeds that of
VIO and lidar when dense fog is introduced.

We also demonstrate the accuracy of our proposed radar-basedmappingmethod is
comparable to mapping with a depth camera in typical, non-DVE scenarios. We also
demonstrate that lidar and depth-camera-based mapping methods are incapacitated
by fog while our method is completely unaffected. This is well demonstrated by
the included video, which shows comparisons between each mapping method in
conditions with and without fog. It also demonstrates our full state estimation and
mapping pipeline in use with a hand-carried sensor rig.

All of this gives us sufficient reason to believe our radar-based state estimation and
mapping methods will perform well when used for autonomous flight of an MAV in
dense smoke and fog. Our completed and planned experiments are laid out in table
2. Through these experiments we hope to show that our method’s performance is
similar to vision and lidar-based methods when conditions are favorable, and that our
method is unaffected by conditions in which vision and lidar are unable to operate.

experiment planned or completed

quantitative state estimator tests completed
qualitative state estimator tests in fog completed
quantitative mapping comparison completed

qualitative mapping comparison in fog completed
radar-inertial MAV control demo planned

comparison radar and vision-based MAV control planned

Table 2: Experiments completed and scheduled
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