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Abstract Among the most challenging of environments in which an autonomous
mobile robot might be required to serve is the subterranean environment. The com-
plete lack of ambient light, unavailability of GPS, and geometric ambiguity make
subterranean simultaneous localization and mapping (SLAM) exceptionally diffi-
cult. While there are many possible solutions to this problem, a visual-inertial frame-
work has the potential to be fielded on a variety of robotic platforms which can op-
erate in the spatially constrained and hazardous environments presented by the sub-
terranean domain. In this work we present an evaluation of visual-inertial SLAM
in the subterranean environment with onboard lighting and show that it can consis-
tently perform quite well, with less than 4% translational drift. However, this per-
formance is dependent on including some modifications that depart from the typical
formulation of VI-SLAM, as well as careful tuning of the system’s visual tracking
parameters. We discuss the sometimes counter-intuitive effects of these parameters
and provide insight into how they affect the system’s overall performance.

1 Introduction

Mobile field robots are being deployed in ever more challenging environments. They
are expected to operate in conditions where the sensors normally used for state es-
timation are severely limited at best and completely useless in extreme cases. As a
motivating example, in the subterranean environment [1] vision is limited to what
can be seen with on-board lighting and GPS is not a viable option to constrain drift.
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Nevertheless, autonomous subterranean robots must be able to localize and map in
these challenging conditions. Without these critical skills an autonomous robot in
the subterranean environment will be unable to plan or accurately control its move-
ments.

Vision-only SLAM is exceedingly popular [8] but this approach works well only
when sensing conditions are favorable. i.e. if the environment is well-lit and track-
able features are plentiful and evenly distributed. If visual tracking fails however,
there may be no way to recover. This is especially true if visual tracking fails in
an area that isn’t previously explored, preventing the use of place recognition as a
means to reinitialize. Generally these methods show a great deal of promise, but are
improved through the addition of other sensors in order to operate through loss of
visual tracking.

An attractive sensor combination for SLAM that balances weight, size and cost
consists of visible light cameras and inertial measurement units (IMUs). The IMU
in these frameworks provides a way to localize when visual tracking fails for short
periods. However, current methods for visual-inertial SLAM depend heavily on sev-
eral assumptions that do not hold in the subterranean context. The first and most
damning of these is that the environment is well and evenly lit. The second is that
a large number of trackable features are evenly distributed throughout the environ-
ment. Finally, despite the community’s goal of handling aggressive motions and
their effect on data from these sensors, current visual-inertial SLAM methods per-
form best when the sensors’ motion is smooth and slow, minimizing motion blur
and enabling at least several informative features to be tracked [3]. For subterranean
robots it is likely that none of these conditions will be met. The only light source
in the environment may be one carried by the robot. This direct lighting results in
poor illumination of the environment and requires slower shutter speeds which in
turn cause more motion blur. Also, depending on the environment’s structure and
the robot’s path, the features used for tracking may not be evenly distributed in
the environment. Lastly, it cannot be guaranteed that the movement of a subter-
ranean robot will be smooth and slow. For example, a wheeled robot moving slowly
over uneven, rocky ground will still experience sudden, jerky sensor motions as its
wheels traverse discontinuities in the terrain.

SLAM using direct-depth sensors is also popular. 3D scanning LIDAR is a par-
ticularly attractive sensor as it does not require ambient light. It does come with its
own limitations in the subterranean environment however. For example, most LI-
DAR SLAM methods rely on scan matching such as iterative closest point (ICP)
[2]. These methods can fail to converge to the correct relative transform between
reference and target point clouds if the robot’s environment is geometrically am-
biguous. For instance, in a long, uniform tunnel ICP will not have a unique solution
for translation along the tunnel.

In this work we present an evaluation of a factor graph based sparse, indirect
visual-inertial SLAM system on a novel subterranean dataset. The same dataset is
run using a variety of visual measurement techniques and parameters. The effects
of these variations on the SLAM system’s performance are discussed with an eye to
generally improving the performance of visual-inertial SLAM in the subterranean
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environment. We develop a novel depth-enabled framework for evaluating the tri-
angulated position of landmarks in the visual SLAM front-end and demonstrate its
effectiveness in the subterranean setting. We also show the choice of parameters can
have a profound effect on the system’s overall performance in terms of accumulated
translational drift over the robot’s trajectory. Finally, we note some counterintuitive
and interesting results in optimizing our system for the subterranean environment.

2 Related Work

2.1 Visual-Inertial SLAM Techniques

Visual-inertial SLAM techniques fall into two categories: filtering and batch opti-
mization. In the filtering approach, IMU measurements are used to propagate the
robot’s state while image measurements are used to correct the state. The filter-
ing approach is exemplified by MSCKF [7]. Filtering approaches to visual-inertial
SLAM are generally faster and more efficient, but their accuracy is dependent on
proper filter tuning. Additionally, filtering approaches only consider the previously
estimated state and current sensor measurements in estimating the current state.
They do not allow for the correction of previous states given new information.

In the batch optimization approach, the system’s current and previous states are
estimated using camera and IMU measurements as constraints in a nonlinear opti-
mization problem. This approach is more resource intensive but also more accurate
than filtering as it uses measurements at multiple timesteps to jointly estimate the
system’s current and previous states. Of course, a batch optimization method that
optimizes over the complete set of measurements from the beginning of the robot’s
run would quickly become computationally intractable. So there are several meth-
ods for limiting the size of the problem while maintaining an accurate state estimate.
For example, keyframing assumes that most camera images do not carry significant
additional information; the camera does not move significantly between frames. So
keyframing approaches select a subset of the most informative camera measure-
ments, referred to as keyframes, and only estimate the system’s states from those.
However, when using this technique the size of the problem still grows linearly in
the number of keyframes. A sliding window filter [13] is a popular way to limit this
growth. The sliding window filter optimizes over a fixed-size set of the most re-
cent keyframes, marginalizing out measurements and states from older keyframes.
This means the complexity of the SLAM problem stays roughly constant over time,
allowing it to be used for long-term localization and mapping. Both of these tech-
niques are used by the popular optimization-based visual-inertial SLAM systems
OKVIS [6] and VINS-Fusion [11].
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2.2 Landmark Depth Estimation in Sparse Visual SLAM

Several methods have been used to incorporate depth measurements from stereo or
RGB-D cameras into the sparse visual SLAM problem. The most straightforward
way to do this is to add the camera measurements to the optimization as a 3D con-
straint on the position of the keypoint in space. However, this can cause problems
because the depth and projection measurements generally have different units and
are subject to different kinds of errors [12]. There are a few ways to address this.

In [12] camera and depth measurements are treated separately: as a 2D measure-
ment of a point in space projected onto the camera’s sensor and a 1D measurement
of that point’s depth in the camera’s frame. This allows for errors on these mea-
surements to be modeled differently. It also makes depth measurements optional. A
camera measurement can still be added to the optimization if its associated depth
measurement can’t be calculated or its uncertainty is too high.

ORB-SLAM2 takes an interesting approach to incorporate depth measurements.
It extracts ORB features from the left and right stereo images. It then parameterizes
camera measurements as [uL,vL,uR] where uL and vL are the horizontal and vertical
coordinates of the ORB keypoint on the left camera’s sensor and uR is the horizontal
coordinate of the corresponding ORB keypoint on the right camera’s sensor. The
depth of the keypoint follows the following linear relationship:

d =
fxb

uL−uR
(1)

where fx is the camera’s horizontal focal length and b is the distance between the two
cameras. Because of the point’s depth is a linear function of the difference in the two
horizontal coordinates of the point on the camera’s sensor, the horizontal coordinate
of the keypoint in the right camera can be used in place of the point’s depth in the
optimization. This means that depth measurements in this method have the same
units as projection measurements and are subject to the same kinds of errors. This
method assumes, however, that the input images are stereo rectified and have the
same focal length. In Section 3.1 we introduce a method that overcomes some of
these limitations and explain how it is augmented into our overall framework.

3 VI SLAM Method

Our SLAM approach is split into a frontend for visual detection and matching
and a backend for nonlinear optimization. The frontend detects visual features and
matches them to previously seen landmarks using the BRISK feature detector and
descriptor. BRISK provides high robustness to motion blur, lighting changes, and
changes in viewpoint. This makes it an ideal detector and descriptor for SLAM in
subterranean environments.
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Our approach’s backend uses batch optimization over a sliding window [13] of
recent camera frames and IMU measurements to estimate the system’s state at the
time of each camera frame. A camera frame consists of the 2-D measurements of
landmarks projected into the the cameras’ sensors and optionally the 1-D depth of
the same landmarks. An IMU measurement is the set of raw IMU readings that
occur between successive camera frames. These IMU readings are preintegrated as
in [4]. The sliding window consists of the most recent P camera frames linked by
IMU measurements (these are referred to as IMU frames) and the N most recent
keyframes. The number of IMU frames and keyframes, P and N can be tuned to suit
the robot’s environment and the capabilities of its computing hardware.

The IMU frames are used to estimate robot poses, landmark positions, robot
speeds and IMU biases. After a frame passes out of the IMU window the system de-
cides if that frame should be a keyframe. If so, the IMU measurements are marginal-
ized but the camera measurements continue to be used to estimate the robot’s poses
and the landmark positions. If not, then the camera and IMU measurements asso-
ciated with that frame are marginalized. This marginalization strategy is pictured
below in Figure 1.

Fig. 1 Illustration of the
marginalization strategy used
by our SLAM method. In this
case there are 2 IMU frames
and 2 keyframes.

The graph structure of the problem is shown in Figure 2. This problem structure
is similar to that used by OKVIS [6].

Fig. 2 Diagram of the factor
graph used by our VI-SLAM
system.

The cost function used by our method’s backend is defined in Equation 2
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where N is the number of keyframes and P is the number of IMU frames in the
optimization, J(i) is the set of landmarks observed in frame i, ei, j

r is the reprojection
error for landmark j in frame i, ei, j

d is the scalar depth error for landmark j in frame
i, ei

s is the IMU error for frame i, and the W matrices contain the weights for the
errors. Note that inertial terms are only present for the IMU frames, and depth terms
(ed and wd) are optional for all frames.

Our SLAM system uses three steps to ensure robustness to incorrect data associa-
tion. First, the system’s frontend uses IMU measurements to propagate the camera’s
pose from the last optimized pose to the current frame time and predicts where
matched landmarks should be observed in the new pose. Landmark matches that are
greater than a certain distance from this predicted observation are discarded. Sec-
ond, the frontend uses RANSAC to ensure the observed positions of the matched
landmarks in the camera frame are geometrically consistent with the landmarks’ es-
timated positions in the global frame. Lastly in the system’s backend the optimizer
computes the cost using robust norms.

3.1 Direct Depth Measurement

In subterranean environments with poor lighting there are often very few trackable
features available. To make matters worse the features are often poorly distributed.
For example, if the robot is carrying its own light, nearby objects will be well illu-
minated but distant objects will often be very poorly illuminated. So the few land-
marks that can be tracked by the SLAM system will be very close to the camera.
This can lead to ambiguities in monocular visual tracking because nearby points are
less informative for estimating the robot’s orientation. The inverse is also true, when
the tracked landmarks are all distant from the camera they are less informative for
estimating the robot’s translation. Finally, scale is only introduced through the opti-
mization of IMU factors, which makes it critically dependent on the accuracy of the
IMU.

One solution to these problems is to use multi-camera systems. If the cameras
have significant overlap in their fields of view they can provide multiple measure-
ments of the same landmark at the same timestep but from different viewpoints. This
can help to constrain the estimated distance to that landmark. However, this method
treats measurements from multiple cameras the same as monocular measurements:
the measurements are simply the 2D coordinates of a landmark when projected onto
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each camera’s sensor. This strategy does not take advantage of the fact that a direct
depth measurement can be obtained for any landmark that is visible in both cameras.

Our method does take advantage of this fact. It first uses brute-force matching to
match keypoints between the left and right stereo images. It then uses stereo triangu-
lation to calculate the distance to the point in space corresponding to the keypoint.
Two measurements are then added to the optimization problem: a 2D camera mea-
surement of the point in camera zero’s frame; and a 1D measurement of the point’s
distance from the left camera’s sensor as in [12].

We keep the depth and 2D camera measurements separate for two reasons. First,
it allows us to weight errors and handle outliers for each measurement type differ-
ently. Second, treating projection and depth as separate measurements means that
depth measurements can be used but they are not required. So in our system key-
points for which depth cannot be calculated are still added to the system as 2D
measurements without depth. This allows our system to use depth measurements
when they’re available but tracking does not fail when depth measurements aren’t
available. Instead it degrades gracefully back to using only 2D measurements.

4 Experiments

4.1 Sensor Setup

To obtain our dataset we used the infrared stereo cameras on an Intel Realsense
D435 and a Lord Microstrain 3DM-GX5-15 IMU as sensors. Images were captured
at 640×480 resolution and IMU messages were read at 100Hz. The performance of
a visual-inertial SLAM system is highly dependent on knowing the camera-to-IMU
transform (referred to as the extrinsics) with great accuracy. To obtain the extrinsics
as well as the intrinsics (focal length and distortion parameters) for both cameras we
used Vicalib, a calibration library based on ceres solver. Vicalib first finds intrinsic
camera parameters (focal length, central point, and distortion parameters) by track-
ing conics on a calibration target and solving an overdetermined perspective-n-point
ransac problem through gradient descent. Vicalib then determines extrinsic parame-
ters (camera-to-IMU rotation and translation) between each IR camera and the IMU
using gradient descent with an IMU residual as presented in [9]. In this optimization
intrinsic parameters are fixed and only the extrinsic parameters are varied. Because
the data was taken in complete darkness in a subterranean environment, the sensor
rig was also equipped a forward-facing 9000 lumen soft-white LED headlamp.
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Fig. 3 The sensor rig used
to capture our subterranean
dataset. Includes an Intel Re-
alsense D435 stereo camera, a
Lord Microstrain 3DM-GX5-
15 IMU, and a 9000 lumen
LED headlamp.

4.2 Dataset Description

Our dataset was recorded in the Hidee gold mine in Central City, Colorado. It con-
sists of camera images and IMU messages recorded by our handheld sensor rig as it
was carried from the start to the end of the mine and back. The total distance cov-
ered was roughly 340 m at an average speed of 1.4 m/s. The environment consisted
of tunnels roughly 2 m in height and 1.5 m wide with bare rock walls. An example
image of the environment can be seen in Figure 4.

Fig. 4 Typical camera image
from the mine dataset with the
headlamp at 15% intensity.
Note the scene is well lit
near the camera, and almost
completely dark just a few
meters from the camera. This
is typical for the entire dataset.

There was no ambient light in the tunnels. The only available light in the en-
vironment came from the sensor rig’s onboard LED headlamp. Two different runs
were done over the same course, one with the headlamp set to 50% intensity and
one with the headlamp at 15% intensity. Apart from the headlamp setting the two
runs are nearly identical. The limited, direct lighting from the headlamp had two
major effects. First, the cameras needed to use long exposure times to adequately
expose their images. This means the images from the two IR cameras often have
severe motion blur as pictured in Figure 5.
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Fig. 5: Camera image comparing motion blur with headlamp at 15% intensity (left
image) to 50% intensity (right image). Average image intensity for both images is
similar but the left image has significantly more motion blur.

Second, light intensity in the scene generally decreases with the square of dis-
tance from the headlamp. This means parts of the scene that are very close to the
camera are well exposed, but parts that are even a moderate distance from the cam-
era are very underexposed. This gives the camera an artificially narrow depth of
field. The result is that the SLAM system was unable to track keypoints more than
a few meters from the cameras. This is illustrated in Figure 6

Fig. 6 Example stereo image
demonstrating the limited
range of the sensor rig’s head-
lamp and the consequently
shallow depth range in which
keypoints are reliably track-
able.

4.3 Test Description

Each dataset was run in our visual-inertial SLAM system with a different set of
measurement parameters, referred to as a setting. Specifically, the keypoint detec-
tion threshold, keypoint matching threshold, and stereo measurement techniques
were varied. The detection threshold is the minimum strength a keypoint must have
before it is added as a measurement to the SLAM frontend [5]. The matching thresh-
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old is the maximum hamming distance between two keypoint descriptors that can be
considered a match. Lastly, stereo measurements can be added to the SLAM system
in one of two ways. The conventional method is to add measurements from multiple
cameras as multiple, independent constraints on 2D reprojection error as is done in
OKVIS [6]. The alternative is to use the method described in Section 3.1, which
matches features between the two cameras and explicitly calculates depth measure-
ments through stereo triangulation. The parameters used in each setting we tested
are given in Table 1.

Table 1: Parameters used for each setting on which the SLAM system was tested.

Setting Number 1 2 3 4 5 6 7 8 9 10 11 12

Detection Threshold 50 50 50 50 40 40 40 40 40 40 40 40
Matching Threshold 80 80 80 80 60 60 60 60 80 80 80 80
Headlamp Setting low high high low low high low high low high low high
Depth Measurement no no yes yes no no yes yes no no yes yes

4.4 Error Evaluation

Due to the length of the path, the confined space of the mine tunnels, and the lack
of line-of-sight between all points in the path we were not able to obtain accurate
groundtruth over the whole path with motion capture, laser tracker, or similar sys-
tem. Instead, SLAM performance is evaluated only on the accumulated translational
drift over the course of the dataset. To assist in calculating this metric, we started
and ended each dataset in the same place and placed an AprilTag [10, 14] at that
location. This allows us to calculate the groundtruth transform from the start of the
dataset to the end, Tgroundtruth. We then compare this to the same quantity estimated
by the SLAM system, Test as follows:

Terr = TestT−1
groundtruth (3)

The error e is defined as the magnitude of the translational component of Terr: e =
‖terr‖2.

5 Results

Table 2 shows the averaged results over 5 runs for each setting. Each run was 340 m
at an average speed of 1.4 m/s. 2D keypoint counts are not reported for settings in
which depth measurements are used because the keypoint detection and matching
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parameters are same as in other settings where depth measurements were not used.
So the 2D keypoint counts for settings with depth would be redundant with the
corresponding settings without depth measurements. Also note the 2D and depth
point counts refer to the number mean number of points detected per camera frame.

Table 2: Averaged results for all settings.

Setting Number 1 2 3 4 5 6 7 8 9 10 11 12

Translational Error (m) 18.8 12.7 36.3 16.0 12.0 29.2 9.72 23.9 12.3 29.6 11.8 34.9
2D Points Detected 88.5 128 122 180 119 181
2D Points Matched 43.3 58.5 53.6 70.8 56.6 84.0
Depth Measurements 41.2 28.7 39.5 59.2 40.0 59.1
Depth Matches 20.6 14.9 18.4 24.7 21.1 28.0

Figure 7 shows the whole range of translational errors obtained for each setting.
Settings that use the brighter headlamp are plotted in blue while low-light settings
are plotted in red. It is interesting to note that low-light settings tend to have lower
translational error and are more consistent than the high-light settings. Figure 8
shows the same data grouped into settings with high and low light and with and
without depth measurement. Curiously, depth measurements are not helpful when
used in high-light settings. However, in low-light settings depth measurements do
improve both the best-case translational drift and the variance in drift. Also, the
low-light settings in general are better and more consistent than high-light settings.

1 2 3 4 5 6 7 8 9 10 11 12
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Fig. 7: Accumulated translational error for all settings. Red plots represent settings
with low light. Blue plots represent settings with high light.
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Fig. 8: Translational errors for high light and low light settings. Shows settings for
which direct depth measurements were used separately from those for which depth
wasn’t used.

As expected, higher keypoint detection thresholds result in fewer total detected key-
points and depth measurements per frame and higher matching thresholds result in
more measurements matched to existing landmarks per frame. Also more keypoints
and depth measurements are able to be detected and matched when the headlamp
setting is high. This increase in the number of points detected and matched does not
translate to better performance in terms of translational drift, however. The settings
that consistently had the best performance, settings 7 and 5, were done in low light
with low detection and matching thresholds.
Lastly, Figure 9 shows plots of the estimated positions of the sensor rig throughout
two example runs. Figure 9a shows the best results obtained and Figure 9b shows
the worst results obtained. Only the estimated positions in the x and y dimensions
are shown because the groundtruth translation and drift in the z direction for all runs
is very small.

6 Conclusions

From these results it is clear that it is possible to obtain consistently good perfor-
mance from a visual-inertial SLAM system in a confined subterranean environment
with no ambient light. The best run on the best setting (setting number 7; i.e. low de-
tection threshold, low matching threshold, low headlamp setting using direct depth
measurements ) had a translational drift of 5.90 meters, just 1.7% of the total path
distance. On the worst-performing run for that setting the drift was still only 3.5%
of the total path distance. However, obtaining such performance requires careful
tuning of the frontend and the effects of each parameter can be counterintuitive. We
will now describe our findings through our exploration.
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Fig. 9: The estimated positions for two example runs plotted in the x− y plane. The
outgoing paths are plotted in blue and the return paths are plotted in orange. Note
the outgoing and return paths in Figure 9a overlap almost perfectly, while there is
nearly no overlap in 9b

Quite counterintuitively the use of a brighter headlamp is not always helpful. The
reasons for this are not completely clear, but a subjective analysis of the image
streams on the high and low light settings gives some clues. With brighter light,
motion blur is minimized and more features are detectable. However brighter light
also results in a stronger brightness dropoff from nearer to more distant objects in
the scene as a result of autoexposure. While this could be mitigated through the
careful tuning of autoexposure control schemes or focusing of the light source with
reflectors or lenses, these strategies would likely be highly geometry and appearance
dependent. In short, brighter light settings can actually result in a narrower depth of
field in which features are detectable. Dimmer light settings, meanwhile result in a
larger depth of field over which features can be detected and tracked. So even though
a dimmer headlamp results in fewer features and more blurring, as long as the blur
is not overwhelming all salient components of the image, those features are better
distributed throughout the scene and are therefore more informative for the visual
tracking front-end of SLAM. Furthermore, analysis of the raw depth measurements
taken over two runs with bright and dim lighting supports the idea that a dimmer
light setting can result in better distributed keypoints. The mean depth of detected
keypoints was 2.12m for dim lighting and 2.01m for bright lighting. Additionally,
the depth variance of detected keypoints was 0.68 for bright lighting and 0.72 for
dim lighting. So in dim light the detected keypoints are slightly deeper and more
widely distributed.
The use of direct depth measurements can be helpful but this is not always the case.
In the brightly-lit settings the use of depth measurements did not affect the system’s
performance significantly, and the best and most consistent results with bright light
were obtained without using depth measurements. In low-light settings, however
the use of depth measurements usually resulted in better and more consistent per-



14 Andrew Kramer, Mike Kasper, Christoffer Heckman

formance. This is likely related to the brighter light’s effect on feature distribution
in the camera’s field of view. In brighter light settings the detected features all close
to the camera. In this case a small amount of translation of the camera results in a
large difference in the feature’s projected position on the camera’s sensor and it is
easy to estimate the feature’s position in 3D space from 2D measurements. So the
depth measurement does not add much additional information. With dimmer light
on the other hand, the features may be further from the camera and, due to higher
motion blur and changes in illumination, the features may not be tracked for long
enough to get a good estimate of their depth from 2D measurements alone. In this
case direct depth measurements can add significant additional information.
To conclude, this work illuminates some of the challenges inherent in using visual-
inertial SLAM in the subterranean environment with no ambient light. These chal-
lenges are often the result of direct lighting from an onboard light source. The use
of an onboard light source causes a high brightness gradient throughout the scene,
forcing the operator to make tradeoffs between the number and quality of features
that can be detected. This work shows it is possible to obtain good visual-inertial
SLAM performance in the subterranean environment with careful tuning. The need
for this environment-specific tuning could be lessened if the effects of direct lighting
from an onboard light source were taken into account in the system’s measurement
model, however, and future work should be directed toward this goal.
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